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Instructions for Theoretical Exam

The theoretical examination consists of 5 long answer questions and 110 points over 2 full days from July 30,
0:01 am GMT.

• The team leader should submit their final solution document in this google form. We
don’t anticipate a tie, but in the rare circumstance that there is one, the time you submit
will be used to break it.

• If you wish to request a clarification, please use this form. To see all clarifications, view this document.

• Participants are given a google form where they are allowed to submit up-to 1 gigabyte of data for their
solutions. It is recommended that participants write their solutions in LATEX. However, handwritten
solutions (or a combination of both) are accepted too. If participants have more than one photo of
a handwritten solution (jpg, png, etc), it is required to organize them in the correct order in a pdf

before submitting. If you wish a premade LATEX template, we have made one for you here.

• Since each question is a long answer response, participants will be judged on the quality of your work.
To receive full points, participants need to show their work, including deriving equations. As a general
rule of thumb, any common equations (such as the ones in the IPhO formula sheet) can be cited
without proof.

• Remember to state any approximations made and which system of equations were solved after every
step. Explicitly showing every step of algebra is not necessary. Participants may leave all final answers
in symbolic form (in terms of variables) unless otherwise specified. Be sure to state all assumptions.

Problems

• T1: Maxwell’s Demon by Zhening Li

• T2: Euler’s Disk by Daniel Seungmin Lee

• T3: Rocket by Adithya Balachandran

• T4: Magical Box by Daniel Seungmin Lee

• T5: Quantum Computing by QiLin Xue

https://forms.gle/gZ7qzzrD7tD9Zz1o8
https://forms.gle/pVWJJqdjTbgMWaWk7
https://docs.google.com/document/d/14t7Vf9rDfox1xBe9XkX9N0Jo4N00ZEu25kEKDn6clCs/edit?usp=sharing
https://www.overleaf.com/read/bpqrxdjhjsvk
https://www.ioc.ee/~kalda/ipho/formulas.pdf


July 30-August 1 Online Physics Olympiad 2022 - Invitational Round

List of Constants

Proton mass mp = 1.67 · 10−27 kg
Neutron mass mn = 1.67 · 10−27 kg
Electron mass me = 9.11 · 10−31 kg
Avogadro’s constant N0 = 6.02 · 1023 mol−1

Universal gas constant R = 8.31 J/(mol ·K)
Boltzmann’s constant kB = 1.38 · 10−23 J/K
Electron charge magnitude e = 1.60 · 10−19

1 electron volt 1 eV = 1.60 · 10−19 J
Speed of light c = 3.00 · 108 m/s
Universal Gravitational constant G = 6.67 · 10−11 (N ·m2)/kg2

Acceleration due to gravity g = 9.81 m/s2

1 unified atomic mass unit 1 u = 1.66 · 10−27 kg = 931 MeV/c2

Planck’s constant h = 6.63 · 10−34 J · s = 4.41 · 10−15 eV · s
Permittivity of free space ε0 = 8.85 · 10−12 C2/(N ·m2)
Coulomb’s law constant k = 1

4πε0
= 8.99 · 109 (N ·m2)/C2

Permeability of free space µ0 = 4π · 10−7 T ·m/A
Stefan-Boltzmann constant σ = 5.67 · 10−8 W/m2/K4
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T1: Maxwell’s Demon

Zed has a container divided by a wall into two chambers of equal volume V . The left chamber has N1

molecules and the right chamber has N2 molecules of some monatomic ideal gas (N1 < N2). Each gas
molecule has mass m and can be treated as a point particle. The entire system is isolated and is at
temperature T .

(a) (5 pts.) Let’s say that he makes a hole in the wall. Then there will be a net flow of molecules from
the right chamber to the left chamber. At equilibrium, let’s say each chamber has N = (N1 +N2)/2
molecules. By how much has the entropy increased?

Zed now wants to revert the container back to its original state with N1 and N2 molecules in each chamber.
He plans to achieve this by covering the hole with a door with area A that only opens towards the second
chamber.

(b) (5 pts.) He thinks that any molecule in the left chamber incident on the door will enter the right
chamber, and no molecules in the right chamber will enter the left one. Under such a model, what is
the initial rate of change in entropy of the system?

N,V, T N, V.T

Figure 1: Parts (c) and (d)

Under the assumptions made by part (b), Zed’s device violates the second law of thermodynamics. We’ll
now investigate why this actually does not happen for a particular kind of door. This door, of mass M , has
a hinge that exerts a restoring torque τ = Kθ when the door is open at an angle θ, where θ is not necessarily
small (Figure 1).

(c) (5 pts.) Explain in one or two sentences why this door behaves effectively like a hole in the wall with
area A′, and hence the second law of thermodynamics is not violated.

(d) (10 pts.) Estimate A′ in terms of the variables given and fundamental constants. You may make
appropriate simplifying assumptions.

Solution

(a) The internal energy of the system must remain the same as the system is isolated. This implies the
temperature of each of the molecules remains as T even when the hole is created. As entropy is a
state function and the temperature remains the same, the change in entropy is caused by isothermal
expansion/compression. There are two contributions to entropy change: the one experienced by the
particles in the first chamber and those in the second chamber.

Since each container as a volume of V , the total volume that each particle can occupy is now 2V. The
number density is thus ν = N1+N2

2V = N
V . The particles in the first chamber increase in volume from V

to V
ν . This means that

∆S1 = N1kB ln
N1/ν

V
= N1kB ln

N1

N
.
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Similarly, for particles in the second chamber, we have

∆S2 = N2kB ln
N2

N
.

The total entropy change is thus

∆S = ∆S1 + ∆S2 = (N1 lnN1 +N2 lnN2 − 2 lnN)kB

Note: Max 2 points for the approach that assumes particles in N1 are distinguishable from particles in
N2. In this approach, the volume of each compartment doubles so the answer is (N1 +N2)k ln 2.

(b) S is a function of N1. Therefore, we can express Ṡ as

dS

dt
=

dS

dN1

dN1

dt
.

Right when the door is opened, the system is essentially in equilibrium, so dS
dN1

= 0. Hence, dS
dt = 0 as

well.

Note: Even though initially Ṡ = 0, it is negative for t > 0, and the entropy of the system decreases.

(c) The door is almost always open due to thermal contact with the wall at temperature T . How open the
door is doesn’t significantly increase as a particle hits it from the left, since its energy is on the same
order as the energy of the door ∼ kT . The effective size of the opening is thus the same for particles
traveling in both directions, so particles pass through the opening in both directions at the same rate,
hence keeping the entropy constant.

Note: This is just an intuitive explanation as to why we shouldn’t find it surprising that there’s an
equal particle flow in the opposite direction. A rigorous argument (that is not cyclic) would be much
more involved.

Marking scheme:

Door is generally open due to thermal motion of molecules in wall 3 pts
Door doesn’t get much more open when a particle hits it from the left 2 pts

Explanations that get partial credit:

• When a particle hits the door from the left, the door opens and a particle from the right passes
through: max. 3pts (only explains the existence of particle flow in the opposite direction)

• Due to the equipartition theorem, 1
2K〈θ

2〉 = 1
2kT > 0, so the door is effectively open: max. 3pts

(same reason as above)

(d) The equipartition theorem gives 1
2K〈θ

2〉 = 1
2kT , so the typical θ ≈

√
kT/K. When

√
kT/K1, the

size of the opening is about 2A sin

(
1
2

√
kT
K

)
; when

√
kT/K & 1, the size of the opening is better

approximated by the size of the hole, A.

Note: In reality, there’s a smooth transition from the
√
kT/K1 regime to the

√
kT/K & 1 regime. A

precise model would likely involve modeling the joint distribution ρ(n,v, θ, θ̇|r) of the door’s angle and
its rate of change, and the particle density and velocity distribution of gas particles at each point in
space.
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T2: Euler’s Disk

A thin, uniform disk of mass m and radius a is initially set at an angle α0 to the horizontal, on a frictionless
surface. It is given an initial angular velocity Ω0 with respect to a vertical axis passing through its center.

(a) (4 pts.) Determine Ω0 for the steady state case, where α̇ = α̈ = Ω̇ = 0.

(b) (2 pts) Write an expression for the total energy of the disk.

The disk is then moved onto a special surface with small bumps of height h spread over it – each bump is
separated by δ. As the disk climbs over a bump and falls back down, its impact is absorbed by the surface,
causing a net energy loss in the system. The disk is set in motion with the same initial conditions as before
but with α0 << 1

(c) (6 pts.) Assuming that this is the only source of energy loss, write a differential equation for α̇ in first
order to α.

(d) (4 pts.) Hence, write an approximate expression for Ω as a function of time.

(e) (2 pts.) Using this model, determine the time it takes for the frequency of the sound the disk makes
against the surface to reach the maximum audible frequency f0.

Solution

(a) Let us use the following three axes:

Let’s say the disk moves in a counter-clockwise direction when viewed from above. Since the disk is
given an angular velocity Ω0ẑ, it must roll without slipping with angular velocity −ω′ x̂2. Since it rolls
without slipping:

2πa cos(α0)

ω′a
=

2π

Ω0

Thus,
ω′ = Ω0 cos(α0)

Therefore, the net angular velocity vector is:

ω = Ω0ẑ− ω′ x̂2 = Ω0ẑ− Ω0 cos(α0)x̂2 = Ω0 sin(α0)x̂1
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Since the disk’s point of contact with the ground and the COM is at rest, we can let the axis passing
through both points – x̂1 – be the instantaneous axis of rotation. Note that this is validated by the
net angular velocity vector lying along x̂1. By the perpendicular axes theorem, the moment of inertia
around x̂1 is I = 1

4ma
2. Thus, the angular momentum vector is:

L = Iω =
Ω0

4
ma2 sin(α0)x̂1

If we calculate torque τ from the point of contact with the ground, the only force that contributes is
weight. Thus,

τ = mga cos(α0)x̂3

This should equal:
dL

dt
=

Ω0

4
ma2 sin(α0)

dx̂1

dt

Let’s do some quick vector analysis to find dx̂1
dt . Note that, since x̂1 is the instantaneous axis of rotation,

the unit vectors x̂1 and x̂3 spin on the plane of the disk at this given instant. Suppose x̂1 spins for an
infinitesimal time t such that its coordinates on the plane of the disk is:

x̂1 = 〈sin(Ω0 cosα0 t), cos(Ω0 cosα0 t)〉

Taking the time derivative,

dx̂1

dt
= Ω0 cosα0 〈− cos(Ω0 cosα0 t), sin(Ω0 cosα0 t)〉 = Ω0 cosα0x̂3

Plugging this into the equation above and solving for Ω0,

Ω0 =

√
4g

a sin(α0)

(b) As derived in the previous question, the total rotational kinetic energy of the disk can be written as:

1

2

(
1

2
ma2

)
(Ω0 sinα0)2

again, since x̂1 is the IAR. Since the COM of the disk remains at height H = a sinα0, we can write its
total energy as:

1

2

(
1

2
ma2

)
(Ω0 sinα0)2 +mga sinα0 =

3

2
mga sinα0

(c) We simply have to add a 1
2mḢ

2 term to the total energy above to take into account the disk’s falling
COM. Approximating the total energy E at the α→ 0 limit,

E =
1

2
ma2 (α̇ cosα)2 +

3

2
mga sinα ≈ 1

2
ma2α̇2 +

3

2
mgaα

Now, we’ll find the power P dissipated by the bumps and equate P = dE
dt . As the disk climbs over a

bump and falls back down, its gravitational potential energy mgh will be absorbed by the surface. In
other words, the disk will lose mgh every δ

Ω cosαa ≈
δ

Ωa . Hence, we get:

P = −mghaΩ

δ

Therefore,

ma2α̇α̈+
3

2
mgaα̇ = −mghaΩ

δ

Assuming the disk spends most of its time falling down from a bump, we can approximate its COM’s
acceleration to be aα̈ ≈ g. Fully simplifying the equation above, we get:

α̇ = −4h

5δ

√
g

a

1√
α
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(d) Solving the differential equation from the previous question gives

α
3
2 − α

3
2
0 = −6h

5δ

√
g

a
t

We can simply plug in α into Ω =
√

4g
aα to find the answer.

(e) The disk will produce a “click” every time it falls off a bump, hitting the surface. The frequency f at
any given time will therefore be:

f =
δ

Ωa

Any attempt with this idea were given full marks.
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T3: Rocket

OPhO organizers have a “propulsionless” rocket, which for simplicity can be assumed to be a 2-dimensional
rectangular box of mass 2M and horizontal length L. Assume that the horizontal sides of the box are
massless while the vertical sides of the box each have mass M . The rocket is initially at rest. We will now
explore the mechanism for how this rocket move. Suppose we have N particles of mass m/N each on the left
and right sides of the box. At time t = 0, we launch the N particles on the left side of the box together to
the right with velocity v

N . In addition, in intervals of time L
v , starting at t = 0, we launch a particle from

the right side of the box to the left side with velocity v. Once a particle reaches the opposite side of the box,
it is stopped. The particular mechanism to shoot and catch the particles can be ignored here. Assume that
this mechanism can conserve energy. After time t = NL

v , there will be N particles on each side of the box,
which is identical to the initial state.

Neglect relativistic effects in part (a) only.

(a) (1 pt.) According to classical (Newtonian) mechanics, what happens to the rocket? Does it move?

(b) (5 pts.) If v � c, how far does the rocket move? Answer in lowest nonzero order in v/c.

(c) (10 pts.) How far does the center of mass of the rocket system move? Once again, answer in lowest
nonzero order in v/c. Justify your answer.

(d) (6 pts.) Explain why this process cannot continue indefinitely. If it could continue forever, we would
able to move the rocket indefinitely with no propulsion.

(e) (5 pts.) Give an estimate for how long this process can continue. How far does the rocket move in
this time?

Solution

(a) At each moment, the particles from the left side of the rocket have momentum N m
N

v
N and the particles

from the right side of the box have momentum mv
N . As these are equal, by conservation of momentum

for the entire system, the rocket must have 0 momentum, so it does not move.

(b) Let β = v/c. The relativistic momentum of the particles from the left side of the rocket is

N
1√

1− β2

N2

m

N

βc

N
=

βmc

N
√

1− β2/N2
.

The momentum of the particle from the right side of the rocket is

1√
1− β2

m

N
(βc) =

βmc

N
√

1− β2
.

The difference in these quantities to lowest nonzero order in β is

βmc

N

(
1 +

β2

2
− 1− β2

2N2

)
=
β3mc(N2 − 1)

2N3
.

This is the momentum of the rocket to the right. Thus, it is equal to γ(2M + N−1
N m)V if V is the

speed of the rocket. As the momentum is third order in β, we can assume that γ ≈ 1 to find V to
lowest nonzero order. We obtain

V =
β3mc(N2 − 1)

2N2(2MN + (N − 1)m)
.



July 30-August 1 Online Physics Olympiad 2022 - Invitational Round

Now, the time is t = NL
v = NL

βc , so the total distance traveled is

V t =
(N2 − 1)m

2N(2MN + (N − 1)m)

v2

c2
L.

Valid solutions that assume N � 1 or m�M are acceptable.

(c) The center of energy in a closed relativistic system with zero total momentum does not move, so the
rocket’s center of mass at the end is exactly where it was in the beginning.

For a proof of this fact, consider a system of particles. We wish to show the claim that
∑

i xiEi is
constant. Whenever there is a collision between particles i and j, note that just before and after the
collision, both particles are at the same position x, so if E′i and E′j are the energies after the collision,
then the change in

∑
i xiEi during the collision is xE′i + xE′j − xEi − xEj = x(E′i +E′j −Ei −Ej) = 0.

This is true as energy is conserved during the collision. We have the same conclusion when one particle
decays for the same reason. Lastly, it suffices to show that

∑
i xiEi is conserved for a set of particles

moving freely with zero total momentum. In this case, Ei is constant and equal to γimic
2, so the

change in
∑

i xiEi is
∑

i(vit)γimic
2 = c2t

∑
i γimivi = c2t

∑
i pi = 0. Here, we have assumed that the

particles move in one dimension, but it is simple to extend this to multiple dimensions. Therefore, we
can conclude that the center of energy does not move.

Half credit will be given for the answer and a classical explanation. For full credit, a satisfactory
relativistic explanation must be provided.

(d) The center of mass does not move although the rocket system moves to the right. This means that
through this process, mass is transferred from the right side of the rocket to the left side. Every time
this process is repeated, the same amount of mass is transferred from the right to the left side, and
since the right side only starts with mass M , the process cannot continue indefinitely. Unfortunately,
we cannot construct a propulsionless rocket even with relativity.

(e) If a mass δm is transferred from the left side to the right side in each step, then the center of mass of
the rocket moves a distance δm

2ML to the left from the geometric center of the rocket. In order for the
center of mass of the rocket to not move, we must have

δm

2M
L =

(N2 − 1)m

2N(2M + (N − 1)m)

v2

c2
L,

δm =
(N2 − 1)mM

N(2MN + (N − 1)m)

v2

c2
.

The number of times that this can continue is roughly

M

δm
=
N(2MN + (N − 1)m)

(N2 − 1)m

c2

v2
.

The total distance that can be traveled is roughly at most L/2 (if all of the mass from the right goes
to the left).

Here, we implicitly assumed m � M . Any solution with correct reasoning and a valid estimate is
acceptable.
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T4: Magical Box

A cubical box of mass M and side length L sits on a horizontal, frictionless plane. The box is filled with an
ideal gas of particle mass m, particle volume density n, and initial temperature T0. One of the vertical walls
inside the cube is made of a highly conductive material, kept at a constant temperature Tb � T0. The wall
is so conductive that the temperature of gas instantaneously changes to Tb after rebounding. All other walls
are made of ideal insulators.

(a) (1 pt.) State, with a reasoning, the direction in which the box will start moving.

(b) (7 pts.) Approximate the initial acceleration a0 of the box. For this question, make sure your equation
is valid for Tb = T0 as well.

(c) (3 pts.) The acceleration of the box then decreases from a0 to af for a short time until t = τ0.
Determine af .

(d) (3 pts.) If τ1 is the time it takes for acceleration to level off for an identical box with the conductive
wall at temperature Tb

3 , calculate τ1
τ0

.

Solution

(a) Let us consider two particles of mass m, both starting at the center of the box. Particle A travels in
the x-direction to the conductive wall, while particle B similarly goes to the opposite insulated one,
both travelling at a speed v. We neglect the impact of the other walls, as due to symmetry, any effects
will cancel out. Furthermore, we can take such an approximation because Maxwell’s distribution shows
that half the particles would travel to the opposite wall and vice versa.

Due to the given conditions, the momentum of the system must initially be zero. As the velocity
of a particle is proportional to the square root of its temperature, v ∝

√
T , then the velocity of A

after rebounding will be slightly greater as v + ∆v in the negative x-direction. The velocity of B after
rebounding will be the same in the positive x-direction. As such, the net momentum of both particles
is −m∆v. This means that the box must start moving in the positive x-direction, or in the direction
of the conductive wall, to conserve the momentum of the system.

(b) Inside the box, the particles will be moving randomly at different speeds. We want to find the number
of particles approaching a wall in the given speeds [v, v+ dv] and angles [θ, θ+ dθ]. If all molecules are
moving in equal directions, the fraction of particles within a solid angle dΩ is dΩ/4π. If we consider
the angles between θ and θ + dθ, we can relate Ω as

dΩ = 2π sin θdθ =⇒ dΩ

4π
=

1

2
sin θdθ.

The number of particles in a unit volume is then

ρ = nf(v)dv
1

2
sin θdθ

where f(v) is the Maxwell speed distribution function. For molecules approaching a wall of area A at
angle θ, the volume encapsulated within a unit time dt is

dV = Avdt cos θ

where A is the area of the wall, or in this case, L2. Therefore, the number of particles approaching the
wall is

N = ρdV = L2vdt cos θnf(v)dv
1

2
sin θdθ
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Suppose the velocity of particles after hitting the insulated wall is vb. Then, by momentum conservation
in the parallel direction of the wall, impulse on the box per collision is:

m

(
v cos θ + vb

√
1− v2

v2
b

sin2 θ

)
≈ m(v cos θ + vb)

Thus, the net impulse imparted for collisions at speed v and at angle θ is:

I∗ = Nm(v cos θ + vb) =
1

2
nL2vf(v)dv(vb cos θ + v) sin θ cos θdθdt

We can then find the force, and hence our acceleration, imparted on the wall by integrating over
impulse and dividing by unit time:

F∗ =
1

2
nL2

∫ π
2

0

∫ ∞
0

v(v cos θ + vb)f(v)dv sin θ cos θdθ

=
1

2
nL2

∫ π
2

0
(
〈
v2
〉

cos θ + 〈vvb〉) sin θ cos θdθ

=
1

6
mnL2

〈
v2
〉

+
1

4
mnL2 〈vvb〉

For the insulated wall, vb = v, so

F =
1

3
mnL2

〈
v2
〉
.

The net force imparted on the box is thus∑
F =

1

6
mnL2

〈
v2
〉 [3

2

〈vvb〉
〈v2〉

− 1

]

Since 〈vvb〉 /
〈
v2
〉
≈
√
T0Tb
T0

=
√

Tb
T0

, we can write our final answer as

a =
1

6
nL2 3kBT0

m

(
3

2

√
Tb
T0
− 1

)
=
nL2kBT0

2m

(
3

2

√
Tb
T0
− 1

)
.

Remarks on the Net Momentum of the System

Though analyzing the impulse imparted at the conductive and insulated walls clearly indicates that the box
moves from its initial position, most solvers, including the problem writer, overlooked the rather obvious fact
that the net force on the system is zero. If we set the system to include the box, the gas, and the heating
element, all interactions that occur in the consequent motion of the box are undoubtedly adiabatic; in other
words, it doesn’t make physical sense for the final momentum of the system to be nonzero – the box’s COM
must return to rest, obeying the laws of Newtonian mechanics. Let’s divide the problem into two cases
based on the size of L relative to the gas’s mean free path λ.

L� λ

L� λ implies that particles interact solely with the walls and not with themselves – once a particle collides
with the conductive wall, gains momentum, and moves straight towards the insulated wall and collides with
it. It’s pretty easy to imagine that the box won’t move all that much from its original position. In the first
few collisions, the box will surely be accelerated towards the conductive wall, but it will come to a stop when
the “hot” particles collide with the insulated wall, delivering their momentum. Once all particles collide
with the conductive wall, the collision frequency and average impulse per collision at the two walls will be
the same, resulting in zero net force.
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L� λ

For this case, particles do collide with each other, and it is possible for the box to be accelerated for a
sustained period of time. The temperature of the gas will gradually increase from the conductive side through
gas particle collisions, eventually reaching thermal equilibrium at Tb.
The box will certainly accelerate from its initial position. There are multiple factors that causes the box to
slow down, as it has been noted by several solvers. For instance, when the box’s speed becomes greater than
the average velocity of gas particles, there will be a rapid decline in the collision rate of gas particles at the
conductive wall. This is supported by some quick calculations.

When the box is moving with velocity vb, particles that collide with the conductive wall have a hori-
zontal component of velocity greater than or equal to vb. The number of particles per area that collide with
the conductive wall can therefore be found as:

1

2
nb

∫ π
2

0

(∫ ∞
vb sec θ

vf(v)dv

)
sin θ cos θdθ

where f(v) is the Maxwell distributuon function of the gas in the vicinity of the conductive wall. If we
evaluate the integral for different values of vb, we find that the collision frequency per unit area decreases
rapidly as vb exceeds the average velocity of gas particles 〈v〉. For instance, collision frequency per unit area
decreases from its initial value by a factor of 1000 when vb = 2 〈v〉.

This effect is also accompanied by “weaker” collisions at the conductive wall when considering parti-
cle velocities relative to the box, ultimately causing the box to slow down. But howmuch does the box’s
speed decrease by? It would slow down until v = vcritical and the pressure on the conductive wall overcomes
than that on the insulated wall again. Then, the box will accelerate towards the conductive wall and the
cycle repeats. However, this won’t continue indefinitely. There are several ways to justify this as well. For
instance, as the gas in the vicinity of the insulated wall heats up, the maximum pressure difference (so when
the velocity of the box is at minimum) of the conductive and insulated walls Pc − Pi will decrease. This
means two things:

1. The maximum speed of the box between two consecutive “slow-downs” will get smaller

2. The vcritical necessary for Pc > Pi will also get smaller

Eventually, when the entire gas reaches Tb, vcritical will just be zero, so the box will eventually come to a full
stop, as needed. From the two observations above, we can conclude that the box will eventually return to
rest after its velocity-time curve undergoes something that resembles damped harmonic oscillations.
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T5: Quantum Computing

In this problem, you will learn the fundamentals of quantum computers, as well as the physics on how they
can be constructed! We have tried to provide as much background information as necessary, but if you
believe some part is missing or unclear, please fill out the clarifications form.

Introduction

Physicists use braket notation to describe vectors in quantum systems. When using a vector ~v to describe a
quantum state, the ket, written as |v〉 can be used. Both notations below are equivalent:

~v =

(
v1

v2

)
→ |v〉 =

(
v1

v2

)
The bra, on the other hand, is the conjugate transpose of the ket 〈v| = (|v〉)†. Given two vectors |v〉 and |w〉,
the braket 〈v|w〉 = |v〉 · |w〉 is the inner product of both vectors. This notation will be used throughout this
problem.

In any digital device, information is communicated via 0s and 1s, or binary code. The simplest units
of this information are called bits. Similar to a bit, the qubit can be represented as a linear combination of
two orthogonal states: quantum-0 and quantum-1, which are typically |0〉 and |1〉 . Here,

|0〉 =

(
1
0

)
, and |1〉 =

(
0
1

)
.

Typically, we write a single qubit state as

|Ψ〉 = a |0〉+ b |1〉 ,

where a, b ∈ C, and 〈Ψ〉Ψ = 1.

(a) (1 pt.) A qubit is prepared in the state a |0〉+ b |1〉 .

(i) What is the probability of measuring the qubit in the state |0〉?

(ii) What is the probability of measuring the qubit in the state |−〉 = |0〉 − |1〉?

Hint: If you are still confused about measurement (it’s tricky!), check out this qiskit article. You can
ignore all the parts with code, we’ll save those for the computer science students writing OCSO.

A quantum gate performs an unitary operator on a quantum state. Applying an operator (sometimes known
as a gate) to a qubit state can be represented in the diagram below.

|Ψ〉 Û Û |Ψ〉

where Û is a local unitary since it only acts on a single qubit. There are five important gates:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, H =

(
1 1
1 −1

)
Here, I,X, Y, Z form the four Pauli matrices and H is known as the Hadamard gate, which we will use
later on when we talk about entanglement.

For example, if |Ψ〉 = 0.6 |0〉+ 0.8 |1〉 and apply the gate X =

(
0 1
1 0

)
, we end up with

X |Ψ〉 =

(
0 1
1 0

)(
0.6
0.8

)
=

(
0.8
0.6

)
= 0.8 |0〉+ 0.6 |1〉 .

https://qiskit.org/textbook/ch-states/representing-qubit-states.html#2.-The-Rules-of-Measurement-
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(b) (1 pt.) A qubit is prepared in the state |Ψ〉 = a |0〉+ b |1〉 . What is the probability of measuring the
qubit Û |Ψ〉 in the state |0〉? Express your answer in terms of a, b, and properties of the unitary Û .

The heart of quantum information lies in what we can do with more than a single qubit. If one qubit has two
dimensions (|0〉 and |1〉), then a two-qubit system can be represented in four dimensions. For a two qubit
system, the state can be written as a0 |00〉+a1 |01〉+a2 |10〉+a3 |11〉 , where |00〉 , |01〉 , |10〉 , |11〉 can be seen
as the “basis vectors.” If we have two independent qubits, i.e. |Ψ1〉 = a |0〉+ b |1〉 and |Ψ2〉 = c |0〉+ d |1〉 ,
we can represent their combined state using the tensor product, i.e.

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉
= (a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉)
= ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 .

Here, we can see that

|00〉 = |0〉 ⊗ |0〉 =


1
0
0
0

 , |01〉 = |0〉 ⊗ |1〉 =


0
1
0
0

 , |10〉 = |1〉 ⊗ |0〉 =


0
0
1
0

 , |11〉 = |1〉 ⊗ |1〉 =


0
0
0
1


Note that not every two qubit state can be written as a tensor product. When this occurs, we say that
they are entangled. We can immediately determine if a state is entangled by calculating its concurrence,
defined by

C = 2|a0a3 − a1a2|.

If C = 0, then the two qubits are separate and the system is separable. If C = 1, the system is maximally
entangled, such as

1√
2
|00〉+

1√
2
|11〉 .

Physically, this means that a measurement of one qubit directly leads to a “collapse” of the other qubit (this
is the classic example shown in popular science media). Note that 0 ≤ C ≤ 1.

We can change the concurrence using a control operation. For example,

|a〉

|b〉 X

performs the CNOT gate. The unitary X is applied to |b〉 if |a〉 = 1, otherwise nothing is done. That is, we
have:

|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉 .

The CNOT gate is an example of a global unitary, since it acts on more than one qubit. Global unitaries for
2 qubit systems can be written as a 4× 4 matrix. For example, we can write

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

where |00〉 , . . . , |11〉 form the 4 standard basis vectors. We can combine local and global unitaries to create
entangled states. For example, consider the following circuit:
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|0〉 H

|0〉 X

The initial state is |Ψin〉 = |00〉 =


1
0
0
0

 . After applying the Hadamard gate H, the state becomes

|Ψmiddle〉 =
1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2
|00〉+

1√
2
|10〉 =


1√
2

0
1√
2

0

 .

After applying the CNOT gate, the state becomes:

|Ψout〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1√
2

0
1√
2

0

 =


1√
2

0
0
1√
2

 =
1√
2
|00〉+

1√
2
|11〉 .

Note that we can avoid matrix multiplication in this last step by seeing what CNOT does on each term of
|Ψmiddle〉 . CNOT will not have an effect on 1

2 |00〉 since the first qubit is |0〉 . CNOT will have an effect on
1
2 |10〉 since the first qubit is a |1〉 , so it’ll flip the second qubit to a |1〉 , giving us the map 1

2 |10〉 7→ 1
2 |11〉 .

(c) (1 pt.) Construct a quantum circuit where the input state is |00〉 and the output state is i√
2
(|0〉 − |1〉)

using only X,Y, Z,H,CNOT gates.

Quantum Teleportation

Quantum teleportation is the transfer of the quantum state of one qubit to another (not the actual physical
qubit) using a shared entangled resource and two classical bits of information. It is performed using the
following circuit.

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉 |Ψout〉

A: H

B: H X

C: X X Z

The gate measures the qubit (returns either a 0 or a 1) and the wider wire represents that information

that flows through this wire is a classical bit.

(d) (1 pt.) Verify that the above circuit does teleport the qubit from the top branch to the bottom branch
by looking at the specific case of α = β = 1√

2

(e) (3 pts.) After the first operation is performed on branch C, the branch is brought a very far distance
from the other two branches. By doing so, it appears we can create faster-than-light communication
during the teleportation process, which is impossible! Explain why there is no contradiction. Justify
rigorously.
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We can analyze this by performing matrix multiplication, but using a circuit-based approach is much cleaner.
To do so, we need to use the Griffiths-Niu Theorem.

(f) (2 pts.) The following circuits, according to the Griffiths-Niu Theorem, are equivalent:

U

=

U

Prove the Griffiths-Niu Theorem.

Using this theorem, we can redraw our circuit as:

|Ψin〉 = α |0〉+ β |1〉 a

|0〉 b

|0〉

A: H Z

B: H X

C: X X

(g) (1 pts.) For a control-Z gate, it doesn’t matter which branch is the control. In other words,

Z =
Z

Prove this relationship.

Using the above problem, we can flip the control-Z gate. Then using the identity Z = HXH, we can reduce
it further:

|Ψin〉 = α |0〉+ β |1〉 a

|0〉 b

|0〉

A: H H X H

B: H X

C: X X

Since H2 = I, we can simplify the top part. Furthermore, we can introduce another CNOT between the first
and the second branch.

|Ψin〉 = α |0〉+ β |1〉 a

|0〉 b

|0〉

A: X H

B: H X X H

C: X X

We were allowed to introduce this CNOT gate since XH |0〉 = H |0〉 . This actually makes it easier using the
following problem:
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(h) (2 pts.) Prove that the below two circuits are equivalent.

X X

X X

=

X

Using this substitution, we end up with:

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉

A: X H

B: H

C: X

We can now introduce another CNOT gate, which doesn’t do anything since C will always be |0〉.

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉

A: X X H

B: H

C: X

Three alternating CNOT gates is equivalent to the SWAP gate, so we can write:

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉

A: H

B: H

C:

where we clearly see a swapping that occurs between the top and bottom branch!

Building Quantum Computers

According to theoretical physcist David P. Divencenzo, there are five necessary (but not necessarily sufficient)
criteria to build a quantum computer:

• A well-characterized qubit.

• The ability to initialize qubits.

• Long and relevant decoherence times.

• A “universal set” of quantum gates.

• The ability to measure qubits.
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In this section, we will focus on how we can create qubits and how we can create a universal set of quantum
gates. Consider two energy levels E1, E0 as the qubit states |1〉 , |0〉 respectively. Assume that

E1 =
1

2
~ω, E0 = −1

2
~ω.

Also assume that the qubit state is time varying, in the form of:

|Ψ(t)〉 = A(t) |0〉+B(t) |1〉 .

(i) (14 pts.) Using the above setup, show how we can implement the quantum gates X,Y, Z. Hint: The
Schrodinger Equation tells us

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 ,

where Ĥ =

(
E0 0
0 E1

)
.

Grading Scheme

(a) (0.5 pts) |a|2

(b) Three answers were acceptable due to question ambiguity:

(i) (0.5 pts) 0

(ii) (0.5 pts) 1
2 |a− b|

2

(iii) (0.5 pts) |a− b|2

(c) (1 pts) |aU11 + bU12|2

(d) (1 pts) Drawing/describing the below or equivalent:

|0〉 Y H

|0〉 X

To check equivalent, use website.

(e) (1 pts) Via either matrix multiplication or circuit analysis (or equivalent)

Note: The last step is the trickiest (where you have to deal with measurement, resulting in 4 cases).
Make sure the participant checks all 4 cases or uses a clever method to cirumvent checking the cases.
If they skip over the measurement step (or it’s not clearly written), deduct 0.5 pts.

(f) (1 pts) Recognizing that classical bits need to be communicated via control wires so the qubit isn’t
teleported faster than light.

(1 pts) Stating that nothing can be recovered from the state before classical bits are communicated.

(1 pts) Proving the above statement. (This actually turns out to be much harder, so if the team
attempts to prove the above, then give the point. The main idea is to recognize that simply stating
you need control wires to prevent FTL communication is not sufficient)

https://algassert.com/quirk
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(g) (2 pts) Complete proof. Partial proofs will receive 1 point.

(h) (1 pts) Complete proof. Partial proofs will receive 0.5 points.

(i) (1 pts) Complete proof. Partial proofs will receive 0.5 points.

(j) • (1 pts) Sets up the system of ODE

• (2 pts) Solves the ODE

• (6 pts) Recognizes that the solution can be written in terms of Pauli matrices,

|Ψ(t)〉 =
(

cos(ωt/2)Î + i sin(ωt/2)Ẑ
)
|Ψ(0)〉

• (5 pts) Shows how using the above form, we can create the X,Y, Z gates.


